Source code for torch_mimicry.metrics.compute_fid

"""
PyTorch interface for computing FID.
"""
import os
import random
import time

import numpy as np
import tensorflow as tf
import torch

from torch_mimicry.datasets.image_loader import get_dataset_images
from torch_mimicry.metrics.fid import fid_utils
from torch_mimicry.metrics.inception_model import inception_utils


[docs]def compute_real_dist_stats(num_samples, sess, batch_size, dataset=None, stats_file=None, seed=0, verbose=True, log_dir='./log'): """ Reads the image data and compute the FID mean and cov statistics for real images. Args: num_samples (int): Number of real images to compute statistics. sess (Session): TensorFlow session to use. dataset (str/Dataset): Dataset to load. batch_size (int): The batch size to feedforward for inference. stats_file (str): The statistics file to load from if there is already one. verbose (bool): If True, prints progress of computation. log_dir (str): Directory where feature statistics can be stored. Returns: ndarray: Mean features stored as np array. ndarray: Covariance of features stored as np array. """ # Create custom stats file name if stats_file is None: stats_dir = os.path.join(log_dir, 'metrics', 'fid', 'statistics') if not os.path.exists(stats_dir): os.makedirs(stats_dir) stats_file = os.path.join( stats_dir, "fid_stats_{}_{}k_run_{}.npz".format(dataset, num_samples // 1000, seed)) if stats_file and os.path.exists(stats_file): print("INFO: Loading existing statistics for real images...") f = np.load(stats_file) m_real, s_real = f['mu'][:], f['sigma'][:] f.close() else: # Obtain the numpy format data print("INFO: Obtaining images...") images = get_dataset_images(dataset, num_samples=num_samples) # Compute the mean and cov print("INFO: Computing statistics for real images...") m_real, s_real = fid_utils.calculate_activation_statistics( images=images, sess=sess, batch_size=batch_size, verbose=verbose) if not os.path.exists(stats_file): print("INFO: Saving statistics for real images...") np.savez(stats_file, mu=m_real, sigma=s_real) return m_real, s_real
def _normalize_images(images): """ Given a tensor of images, uses the torchvision normalization method to convert floating point data to integers. See reference at: https://pytorch.org/docs/stable/_modules/torchvision/utils.html#save_image The function uses the normalization from make_grid and save_image functions. Args: images (Tensor): Batch of images of shape (N, 3, H, W). Returns: ndarray: Batch of normalized images of shape (N, H, W, 3). """ # Shift the image from [-1, 1] range to [0, 1] range. min_val = float(images.min()) max_val = float(images.max()) images.clamp_(min=min_val, max=max_val) images.add_(-min_val).div_(max_val - min_val + 1e-5) # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer images = images.mul_(255).add_(0.5).clamp_(0, 255).permute(0, 2, 3, 1).to( 'cpu', torch.uint8).numpy() return images
[docs]def compute_gen_dist_stats(netG, num_samples, sess, device, seed, batch_size, print_every=20, verbose=True): """ Directly produces the images and convert them into numpy format without saving the images on disk. Args: netG (Module): Torch Module object representing the generator model. num_samples (int): The number of fake images for computing statistics. sess (Session): TensorFlow session to use. device (str): Device identifier to use for computation. seed (int): The random seed to use. batch_size (int): The number of samples per batch for inference. print_every (int): Interval for printing log. verbose (bool): If True, prints progress. Returns: ndarray: Mean features stored as np array. ndarray: Covariance of features stored as np array. """ with torch.no_grad(): # Set model to evaluation mode netG.eval() # Inference variables batch_size = min(num_samples, batch_size) # Collect all samples() images = [] start_time = time.time() for idx in range(num_samples // batch_size): # Collect fake image fake_images = netG.generate_images(num_images=batch_size, device=device).detach().cpu() images.append(fake_images) # Print some statistics if (idx + 1) % print_every == 0: end_time = time.time() print( "INFO: Generated image {}/{} [Random Seed {}] ({:.4f} sec/idx)" .format( (idx + 1) * batch_size, num_samples, seed, (end_time - start_time) / (print_every * batch_size))) start_time = end_time # Produce images in the required (N, H, W, 3) format for FID computation images = torch.cat(images, 0) # Gives (N, 3, H, W) images = _normalize_images(images) # Gives (N, H, W, 3) # Compute the FID print("INFO: Computing statistics for fake images...") m_fake, s_fake = fid_utils.calculate_activation_statistics( images=images, sess=sess, batch_size=batch_size, verbose=verbose) return m_fake, s_fake
[docs]def fid_score(num_real_samples, num_fake_samples, netG, dataset, seed=0, device=None, batch_size=50, verbose=True, stats_file=None, log_dir='./log'): """ Computes FID stats using functions that store images in memory for speed and fidelity. Fidelity since by storing images in memory, we don't subject the scores to different read/write implementations of imaging libraries. Args: num_real_samples (int): The number of real images to use for FID. num_fake_samples (int): The number of fake images to use for FID. netG (Module): Torch Module object representing the generator model. device (str/torch.device): Device identifier to use for computation. seed (int): The random seed to use. dataset (str/Dataset): The name of the dataset to load if known, or a custom Dataset object batch_size (int): The batch size to feedforward for inference. verbose (bool): If True, prints progress. stats_file (str): The statistics file to load from if there is already one. log_dir (str): Directory where feature statistics can be stored. Returns: float: Scalar FID score. """ start_time = time.time() # Check inputs if device is None: device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu") if isinstance(dataset, str): default_datasets = { 'cifar10', 'cifar100', 'stl10_48', 'imagenet_32', 'imagenet_128', 'celeba_64', 'celeba_128', 'lsun_bedroom', 'fake_data', } if dataset not in default_datasets: raise ValueError('For default datasets, must be one of {}'.format( default_datasets)) elif issubclass(type(dataset), torch.utils.data.Dataset): if stats_file is None: raise ValueError( "stats_file cannot be empty if using a custom dataset.") if not stats_file.endswith('.npz'): stats_file = stats_file + '.npz' else: raise ValueError( 'dataset must be either a Dataset object or a string.') # Make sure the random seeds are fixed torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) # Setup directories inception_path = os.path.join(log_dir, 'metrics', 'inception_model') # Setup the inception graph inception_utils.create_inception_graph(inception_path) # Start producing statistics for real and fake images # if device and device.index is not None: # # Avoid unbounded memory usage # gpu_options = tf.compat.v1.GPUOptions(allow_growth=True, # per_process_gpu_memory_fraction=0.15, # visible_device_list=str(device.index)) # config = tf.compat.v1.ConfigProto(gpu_options=gpu_options) # else: # config = tf.compat.v1.ConfigProto(device_count={'GPU': 0}) config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 config.gpu_options.allow_growth = True with tf.compat.v1.Session(config=config) as sess: sess.run(tf.compat.v1.global_variables_initializer()) m_real, s_real = compute_real_dist_stats(num_samples=num_real_samples, sess=sess, dataset=dataset, batch_size=batch_size, verbose=verbose, stats_file=stats_file, log_dir=log_dir, seed=seed) m_fake, s_fake = compute_gen_dist_stats(netG=netG, num_samples=num_fake_samples, sess=sess, device=device, seed=seed, batch_size=batch_size, verbose=verbose) FID_score = fid_utils.calculate_frechet_distance(mu1=m_real, sigma1=s_real, mu2=m_fake, sigma2=s_fake) print("INFO: FID: {} [Time Taken: {:.4f} secs]".format( FID_score, time.time() - start_time)) return float(FID_score)